
Technical Note
CMU/SEI-99-TN-003

Carnegie Mellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

COTS in the
Real World:
A Case Study in Risk
Discovery and Repair

Scott Hissam
Daniel Piakosh

June 1999

COTS-Based Systems Initiative

DTIG QUALITY INSPECTED 4
Unlimited distribution subject to the copyright

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-O0O3 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L. Core Road;
PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free in the U.S. 1-800-547-8306 / FAX:
(304) 284-9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access to and
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other
U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense
Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 /
Phone: (703) 767-8274 or toll-free in the U.S.: 1-800 225-3842.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or
administration of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act
of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or
executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion,
creed, ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the
judgment of the Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue,"
excludes openly gay, lesbian and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at
Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412)-268-2000.

Contents

Abstract vii

Executive Summary 1

1 Introduction 2

2 Background 3
2.1 DiamondTEK Ultra 3
2.2 JEDMICS and DiamondT£/i: Ultra 6

3 The Investigation 8
3.1 Experiment 1—setsockopt () 8
3.2 Experiment 2—IPSO Labels 11
3.3 Experiment 3—Labels and TCP/IP 17

4 Summary Findings 20

5 Epilogue 21

References 23

CMU/SEI-99-TN-003

CMU/SEI-99-TN-003

List of Figures

Figure 1. Basic Operating Concept 4
Figure 2. IP Packet with IPSO Option 5
Figure 3. NIC Modes of Operation 6
Figure 4. Sample Execution of WinNT_clt 9
Figure 5. A Captured WinSock 2.0 Network

Packet 9
Figure 6. getsockopt () Under Solaris 10
Figure 7. Sentinel Program 12
Figure 8. UNIX-Style Network Device Driver

Architecture 14
Figure 9. A Captured Mislabeled Network

Packet 15
Figure 10. Arbitrary File Boundaries

Ignored by TCP 16
Figure 11 A Captured Data Mixed Network

Packet 16
Figure 12 . TCP ACKS and "Piggy Backing"

Failure 18
Figure 13. TCP Error Processing 19
Figure 14 . Security Processor Example 21

CMU/SEI-99-TN-003

iv CMU/SEI-99-TN-003

List of Tables

Table 1. Sender Command Line Options 13

CMU/SEI-99-TN-003

vi CMU/SEI-99-TN-003

Abstract

Like many organizations in both the public and private sectors, the U.S. Department of
Defense (DoD) is committed to a policy of using commercial off-the-shelf (COTS)
components in new systems, particularly information systems. However, the DoD also has a
long-standing set of security needs for its systems, and the pressure to adopt COTS
components can come into conflict with those security constraints. The major elements of
this conflict are the DoD's overall approach to system security on one hand and the
economic forces that drive the component industry on the other. As DoD managers and
system integrators look to the COTS marketplace for components to satisfy more security
requirements, this conflict becomes more prominent. In this report, we describe an actual
product evaluation where just such a conflict occurred, examine why that conflict exists, and
outline the corrective steps that were taken.

CMU/SEI-99-TN-003 vii

viii CMU/SEI-99-TN-003

Executive Summary

In November 1998 the Joint Engineering Data Management Information and Control System
(JEDMICS) program asked the Software Engineering Institute to investigate the use of a
particular product for protecting data assets in the JEDMICS system. This product, produced

by Cryptek, consists of both networking hardware and software. The objective of the
investigation was to identify technical risks in the second phase of JEDMICS deployment of
Cryptek products. The first phase of deployment would use Cryptek products for data
encryption and firewall protection. The second phase would introduce the use of data labels
to provide confidentiality in a multi-user, multi-contractor environment. The first phase of
deployment would be "non-intrusive"—i.e., no design or code changes would be needed to
the JEDMICS system. The second phase would require design and code changes, but the
extent of these changes was unknown. The SEI task was to identify design risks for the
second phase deployment, and propose mitigation strategies.

The major findings of this investigation are the following:

1. Platform services needed to use Cyrptek for data labeling work on some JEDMICS
platforms (Solaris and IPJX), but not on others (WindowsNT, Windows9x). This means
that Windows platforms cannot be used to provide JEDMICS services that submit data to
JEDMICS servers where these submissions must use data labels for security.

2. The network protocol used by the JEDMICS system (TCP/IP) does not support changing
data labels in the same session. This means that changes to the JEDMICS design and
implementation will be required to support clients requesting documents with different
data labels.

This report reaches no categorical conclusions regarding the feasibility of using Cryptek
products in JEDMICS. We do not know whether labeled data must be submitted from
Windows platforms (finding #1). We also do not know how much design or implementation
rework is required, or the degree of freedom allowed in making various design tradeoffs—
for example, designs that address finding #2 but seriously degrade performance. Also, there
are other issues regarding Cryptek that we have not fully investigated—for example, the fact
that third-party software such as Oracle, Browsers, etc., need to be made "Cryptek aware" if
these products are to use data labels. Thus, while we are not categorical about the feasibility
of using Cryptek, we can say there are significant unknowns, at least to the SEI.

The attached report is a technical summary of the SEI investigation. After submitting a draft
version of this report to the JEDMICS program office for review, the SEI and JEDMICS
outlined a design mitigation strategy (see the Epilogue of this report) and a series of steps
that might demonstrate the feasibility of this strategy. However, at this time, the technical

feasibility of this mitigation strategy remains unconfirmed.

CMU/SEI-99-TN-003 1

1 Introduction

"The supreme misfortune is when theory outstrips performance."
—Leonardo da Vinci

Use of commercial off-the-shelf components is becoming more predominant everyday.
COTS products are making their way into systems that are being deployed in the U.S.
Department of Defense (DoD), federal and state agencies, and U.S. industry. These systems
range from the very simple to the very complex, from information systems to embedded
systems, and from the non-essential to the most critical. With such widespread use of COTS
components, it is easy to see why conflicts between the needs of a system and the
capabilities of components can arise. In some cases these conflicts can be so great that there
is no resolution, and the COTS solution is abandoned.

This conflict is greatest when products and the standards they implement are outstripped by
actual system requirements. A project in the DoD faced such a conflict. This project re-
quired the use of encryption and security labels on the data and network traffic that were
transmitted from the system. The encryption would ensure that the data could not be seen by
unauthorized recipients. The security labels would indicate the level of military-criticality
and the proprietary nature of the data and information. A conflict arose between the commer-
cial hardware and software that was used for encryption and labeling.

In this report, we describe the investigations that were performed to determine how well the
selected commercial components met the mission needs of the DoD project. We also
discusses the underlying principles that were violated, which led to the conflict. The rest of
this report is organized as follows: In Section 2, we explain the context of the mission re-
quirements for data labeling and commercial standards employed. In Section 3, we describe
the experimental testbed that was created to investigate the commercial component and the
conflicts that were discovered. We present our summary in Section 4. In the epilogue
(Section 5), we briefly discusses the repair strategy that was enacted to address the findings
in this report.

CMU/SEI-99-TN-003

2 Background

The Joint Engineering Data Management Information and Control System (JEDMICS) is a
program under joint sponsorship by the armed services of the U.S. Fundamentally, a
JEDMICS system is a document and drawing repository. Essentially, one or more
document(s)/drawing(s) (referred to generically as "documents" in the remainder of this
report) can be stored, requested, and served from a JEDMICS system. Although a JEDMICS
system is substantially more complicated than this, such a description will suffice as a
working description in this report.

The documents stored on a JEDMICS server often have proprietary commercial data rights
or official military classifications and caveats. The data are proprietary because the
documents detail the specifications of parts, components, subsystems, and systems in use in
the DoD (e.g., nuts, bolts, engines, aircraft). The military classifications and caveats stem
from the mission criticality of those items and how they are used by the DoD. The JEDMICS
Program Office is not tasked with assigning those data rights and classifications to the
documents. However, the program office is required to allow the end user to assign the
appropriate labels. Therefore, a JEDMICS system should be functionally capable of labeling
documents according to the handling requirements of the installation's cognizant authority.

In support of this requirement, the JEDMICS Program Office investigated the use of com-
mercial-off-the-shelf networking hardware and software to support data labeling. The
product selected to support data labeling was Cryptek's Diamondris£ Ultra.

2.1 Diamond TEK Ultra

DiamondTisAT Ultra is a network subsystem that is made up of a network interface card
(NIC), a user-assigned smart card, and a central management workstation (D7Central). The
NIC replaces the typical network interface card found in most desktop workstations and
servers (e.g., 3Com, NE2000). The product comes with software drivers for the Microsoft
Operating Systems, Sun Microsystem's Solaris, and Silicon Graphic's IRIX.

The Cryptek NIC is different from traditional NICs in that it can support a range of security
features. The list of security features includes encryption (DES and Type-I crypto) and
security data labeling. Additionally, the Cryptek NIC can be programmed to behave in a
manner like that of a network firewall (e.g., host and port associated connectivity). The
experiments described in this report centered on the data labeling capabilities of the Cryptek
NIC.

CMU/SEI-99-TN-003

Basic Operating Concept

Upon computer start, the NIC is configured to operate with a security label. Any network
traffic that originates from the NIC is labeled according to the configuration set in the NIC.
Conversely, any network traffic received by the NIC is accepted only if the label matches the
configuration set in the NIC. Any attempt to generate or receive network traffic that does not
match the NIC's configuration is audited to DlCentral.

NIC Configuration

Configuration of the NIC is performed at any point after the host computer is turned on. This
occurs once the end-user inserts his or her assigned smart-card into the KlCfs smart-card
reader and enters a personal identification number (PIN). The user then selects his or her
profile (e.g., secret, unclassified, etc.) via a toggle switch on the card reader. The NIC then
sends station identification, user data, and profile information to DJCentral. DTCentral
performs the necessary table lookups and responds to the NIC with the appropriate
configuration. Finally, the configuration is used to program the NIC to the security level(s)
for which it is permitted to operate (see Figure 1).

Diamond Central

Security
level(s)

End User
Workstation Diamond NIC

w/reader

Figure 1. Basic Operating Concept

NIC Operation

Once configured by DTCentral, the NIC can send and receive network traffic. On a write, the
NIC places the assigned security level on every network packet transmitted. This security
level is placed in the Internet Protcol's (IP) options field defined in RFC791 (the original
protocol specification for IP) as a subtype for security, otherwise know as the Internet
Protocol Security Option (IPSO) defined in RFC1108. This security option is simply
appended to the end of the normal DP header (see Figure 2).

CMU/SEI-99-TN-003

Physical
Header

IP Header
IP Options
(sec label)

TCP
Header

Data

physical header

jd.sei.cmu.edu -> gc.sei.cmu.edu /CP D=4004 S=34304
Ack=3482872727 Seq=832516110 Jfen=120 Win=8760

■:^: 10800 2023 160f 0800 2077 16b6 080C| 4800
i?: OOac 625e 4000 ff06 8440 80ed 0362 80ed
32: 031bJ860c 0000 0000 0206 0055 OOet) 8600
•3<i: Ofay 319£ 300e cf98 6b97 5018 2238 8e7f
64 : 0/00 15555 5555 5555 5555 5555 5555 555& , .1

security label

s*

%
IPSO header data

Figure 2. IP Packet with IPSO Option

On a read, the NIC simply queries the IP options field, looking for both the set security
option and the contents of that security label. If the label is not appropriate for the
configuration set for the receiving NIC, the NIC ignores the IP packet; otherwise the packet
is processed accordingly.

Since the option field used for the security data label is actually part of the IP header, the
NIC is capable of labeling both TCP (Transmission Control Protocol, RFC793) and UDP
(User Datagram Protocol, RFC768) network traffic, as well as any other IP-based protocol.

NIC Modes of Operation

The NIC and software drivers can operate in one of two modes: autonomous and non-
autonomous. These modes are significant to network write operations, not read operations.

In autonomous mode, the NIC labels outgoing IP network traffic with the security level
assigned and configured by DTCentral (discussed above, in "NIC Configuration"). The NIC
software device driver reads the assigned security level from the memory on the NIC. This
information is then formatted by the software device driver to confirm to the IPSO
specification to build a properly-formed IP header with options. On a write, the IP header and
options, along with the data, are passed to the NIC for transmission (see Figure 3a).
Essentially, in this mode of operation, only a single label is capable of being generated and
subsequently transmitted by the NIC.

In non-autonomous mode, the data label that is to be placed on outgoing data comes from the
user application and not the NIC memory. This label can be set by a user application through
a POSIX setsockopt () operation (see Figure 3b). Since the NIC is not solely responsible

for determining the labeling of the packets in non-autonomous mode, the NIC can transmit

CMU/SEI-99-TN-003

different network packets with different labels—although those labels must still conform to
the range configured for the NIC.

o
z

1) security
configuration

2) security
label & data

3) security
label & data

DiamondV/C Hardware
Device Driver

E
£
CO

Native Protocol Stack

Host Operating
System

E

CO

ware
Device Driver

Native Protocol Stack
fc*l

Host Operating
System

Application -1

2) IP
options

1)set IP
Options
(label)

a) autonomous mode b) non-autonomous mode

Figure 3. NIC Modes of Operation

2.2 JEDMICS and DiamondTEK Ultra

JEDMICS deployment of the Cryptek technology described in Section 2.1 was scheduled to
occur in two phases. The Phase 1 deployment is characterized as the non-intrusive use of
Cryptek in a JEDMICS environment. In this non-intrusive phase, JEDMICS clients and
servers would be unaware of DiamondTEK Ultra. This means, on one hand, that no software
components in JEDMICS needed to be modified. On the other hand, the software would not
have the ability to effectively manipulate data labels. Thus, in the Phase 1 deployment, there
was no data labeling requirement. The only features of the DiamondZBÄ" Ultra product that
were used were the encryption and firewall filtering capabilities (essentially creating a
hardware-hardened virtual private network). Phase 1 deployment was consistent with the
autonomous mode of operation of the DiamondTEK Ultra product.

The Phase 2 deployment would add the additional requirement for data labeling, which
would require a more intrusive integration of Diamondr£Ä" Ultra and the JEDMICS
environment. Since JEDMICS servers are required to manage documents with different data
labels, a JEDMICS server would assign the correct IPSO label for all documents leaving a
JEDMICS server. As such, the server will be expected to reconfigure the IPSO label upon
each separate request for a document. Therefore, the non-autonomous mode of operation
seemed consistent with the concept of JEDMICS operation discussed in Section 2, and
seemed to match Phase 2 requirements.

There were several open questions about whether DiamondTEK Ultra would work in Phase
2, given the requirement for JEDMICS servers to label documents. This suggested the
following three lines of inquiry: First, can the IPSO label be manipulated (i.e., set and read)

CMU/SEI-99-TN-003

on server host operating systems where JEDMICS servers run? Second, is the IPSO label set
making it into the actual network traffic? Third, are the protocols that are used by the
JEDMICS server in any way affected by setting the label? The next section details our
investigation.

CMU/SEI-99-TN-003

3 The Investigation

To answer the questions posed in the previous section, we devised three experiments. The
first experiment determined the support for the POSDC setsockopt () across the

operating systems needed in the JEDMICS environment. The second experiment addressed
how network packets were affected by insertion of IPSO labels. Finally, the third experiment

considered the effect of labeled packets on a network where different hosts had access to

different labels.

3.1 Experiment 1—setsockopt ()

This experiment centered on the needed support for setsockopt () on the operating
systems that the JEDMICS server would operate. Without support for setsockopt (), it
would be next to impossible for a JEDMICS server to directly set IPSO labels
programmatically. In this experiment, we looked at Microsoft WindowsNT, Sun Solaris, and
Silicon Graphics IPJX.

WindowsNT and IPSO Data Labeling

Microsoft's operating systems have struggled with the Internet Protocol for years, including
TCP and UDP; this is still true today. The current version for Microsoft's TCP/IP stack
(a.k.a. WinSock) is WinSock version 2.0, which is supported under Windows 95,
WindowsNT, and Windows 98.1 Under WinSock 2.0, there is only limited support for
configuration, or parameterization, of the IP, TCP, or UDP protocols. WinSock 2.0 has no
support for IP_OPTIONS, which is a feature needed to support IPSO data labeling.

A test program and snoop under Solaris demonstrated the lack of support for setting various

JP parameters, including IP_OPTIONS (Internet Protocol Options) and IPJTTL (Internet
Protocol Time To Live). These findings were further substantiated in references [Quinn 98]
and [Microsoft 99], where it was confirmed that IP_OPTIONS was not required and may not
always be supported. Interestingly enough, attempts to set these options using a test program
on WinSock 2.0 failed silently. In other words, the WIN322 calls to setsockopt () and
WSAGetLastError () returned codes that indicated that the calls were successful, when

indeed they were not (see Figure 4). This was confirmed by the snoop utility as shown in

Figure 5.

1 Previous versions of Windows (3.1, 3.11, or WFW) were not checked.
2 WIN32 is the name of the API which refers to the collection of functions, procedures, system calls

which are the underpinnings of recent versions of Microsoft Windows (e.g., Windows95,
WindowsNT).

8 CMU/SEI-99-TN-003

l:Winnt_clt -n gc.sei.cmu.edu -e 4004
2:CipsoLabel size is '12'
3:Client connecting to: gc.sei.cmu.edu
4:performing getsockopt(): can we get IP_TTL?
5: getsockopt() returned: retval 0, ttl 0x20
6:performing setsockoptO on IP_TTL
7: setsockoptO returned: retval 0, error 0
8:performing getsockopt():
9: getsockopt() returned:

Silent Failure

0*-

can we get IP_TTL?
retval 0, ttl 0x40, 0*-

10:performing getsockopt(): can we get IP_0PTI0NS?
11: getsockopt!) returned:
12:performing setsockoptO
13: setsockoptO returned:
14:performing getsockopt():
15: getsockopt() returned:

retval 0, lenop 0x0, error 0 ■+•

retval 0, error 0
can we get IP_OPTIONS?
retval 0, lenop Oxc, error 0 «4-

16:Sent Data [This is a small test message [number 0]]

Figure 4. Sample Execution of WinNT_clt

Referencing line 5 in Figure 4, the test program reports that the current value for the IP
parameter time-to-live (TTL) is 0x20 (decimal 32). For line numbers 6 through 9, the test
program instructs WinSock to set TTL to 0x40 (decimal 64). It also retrieves TTL from
WinSock to confirm that TTL was set accordingly. All operations are performed without
error. Lines 10 through 15 use the same WIN32 calls to set the IP_OPTIONS field to the
IPSO header, and again all operations are performed without error.

pcbj.
Ack

sei.cmu.edu -> gc.sei.cm
=4100106949 Seq=25425401

ii.edu TCP D=400<
1 Len=128 Win=8'

1
H

S=
50

=2701

..U)8.....

"B.R..This
small test
ge [number

. . .E.

b. . P.
is a
messa
0] ...

0: 0R00
16: OOaS
32: 031b

TTLfc k00
80
Of

10 9/61
)6 V'Vb6
27 9bbb

IHLfcL*?0,
WS^JT S 0 so.

48: 2238 f552 0000 5468 6973 2069 7320 6120

80:
736d 616c 6c20 7465 7374 206d 6573 7361
6765 205b 6e75 6d62 6572 2030 5dp0 cOOc

x / o : fa?7 1400 0000

Figure 5. A Captured WinSock2.0 Network Packet

Analysis of the network traffic generated by the test program proved that the calls to update
the TTL and the IP_OPTIONS to include the IPSO header did indeed fail. These calls failed
silently as the return codes from getsockopt (), setsockopt (), and
WSAGetLas tError () all returned 0 (zero; or noError). Referring to Figure 5, there are
three failures that must be noted:

1. Actual TTL of 0x80 (decimal 128) was not correctly reported as shown on line 5 or 9;
and was not set to 0x40 (decimal 64) as shown in Figure 4.

2. Although lines 13 and 15 report success in setting and getting the IP.OPTIONS field
for the IPSO header, the actual network packet that was sent did not include the
ff_OPTIONS set by the test program in line 12 of Figure 4.

CMU/SEI-99-TN-003

3. Actual Internet Header Length (ML) of 0x05 (decimal 5) confirms that the length of the
Internet header did not increase as would be expected if the IP_OPTIONS field had
been set. The length of the IPSO header is 12 bytes, or better, three 4-byte words. An
IHL of 5 words plus a IPSO header of 3 words should have resulted in a total IHL of
0x08—which was expected, but not found in packet header.

Solaris and IRIX and IPSO Data Labeling

The other operating systems we examined in this experiment behaved correctly and similarly
to each other with respect to setting the IP_OPTIONS via setsockopt (). However,
retrieval via getsockopt () of the socket options set behaved differently in each operating
system. This was a troubling surprise.

/*
* receiver.c
*/

optlen = sizeofdpsoLabeU ;
printf ("size = %d\n", optlen);
status = getsockopt (con_fd, IPPROTO_IP, IP_OPTIONS,

(char *) &IpsoLabel, fcoptlen) ;
if (status == -1) {

printf ("getsockopt failed %d, %d\n", status, errno) ;
perror ("con_f d") ,-

} else {
printf ("optlen returned %d\n", optlen);

printf("taglevel 0x%02x, category 0x%02x\n",
IpsoLabeLTagLevel, IpsoLabeLTagCategory) ;

}
output:
size = 12

12 correct answer
0x5 5 correct answer

optlen returned 16
taglevel Oxff^category Oxee*

1
Oxee correct answer I

Figure 6. getsockopt () Under Solaris

Both Solaris and IRTX would return an additional 4 bytes not associated with the IPSO label.
The additional 4 bytes of data returned from the getsockopt () function call when
requesting the current IP.OPTIONS appears to be a bug that stems from the special
processing that is performed when setting the IP_OPTIONS using the setsockopt ()
function call. When setting IP_OPTIONS, special processing is performed to handle source
routing. An additional 4 bytes is added to the beginning of the IP_OPTIONS data to account
for the first hop when using source routing. This processing appears to occur even when the
IP_OPTIONS data do not contain source routing information. The first 4 bytes are not
actually included in the IP_OPTIONS data that go out on the wire. However, this bug results
in an additional 4 bytes being returned for all getsockopt () functions calls requesting
the current P_OPTIONS.

Under Sun Solaris, getsockopt () would return the 4 bytes and the data contained in the
IpsoLabel struct (seen in Figure 6). If the buffer to getsockopt () did not account

10 CMU/SEI-99-TN-003

for this, Solaris would inadvertently overwrite memory not allocated to the IpsoLabel
struct.

Under SGFs IRIX, getsockopt () would also return the 4 bytes not associated with the

IpsoLabel struct but would not overwrite memory as on Solaris. However, the data
returned in the IpsoLabel struct was not correct and was offset by 4 bytes.

Results from Experiment 1
1. It is important to note that getsockopt () is designed to report on the current

IP_OPTIONS settings for outgoing packets and cannot be used to determine the
IP_OPTIONS on incoming packets. This test with getsockopt () confirmed that
JEDMICS would not be able to rely on getsockopt () to report on the security label
just received. Given the POSIX specification and the confirmed behavior of
setsockopt () and getsockopt () for Solaris and IRIX, it would be impossible
for a JEDMICS client to read the actual security label applied to network packets for a
document retrieved from a JEDMICS server.

2. setsockopt () under Solaris and IRK did perform as expected as IPSO data labels
could be programmatically set.

3. WinSock version 2.0 could not be used at all to support IPSO data labeling because
setsockopt () had no effect on outbound data packets. Therefore, use of a Microsoft
WindowsNT platform as a host for a JEDMICS server will not be possible without
significant modification to the WinSock networking stack. Alternatively, it might be
possible to find a third-party replacement for native WinSock, but such an investigation
was beyond the scope of this effort.

3.2 Experiment 2—IPSO Labels

This experiment was designed to answer the question posed in Section 2: whether or not the
IPSO date labels set from experiment 1 were actually making it out into the network traffic.
In this experiment, we looked only at an application running under Sun Solaris and Silicon
Graphics IRK.

The Programs

A test harness was constructed to help us answer our questions. This harness has the
following components (illustrated in Figure 7 below):

•

•

a simple client/server test program (e.g., sender and receiver) that would run on Sun
Solaris and Silicon Graphics IRK

an observation program (we'll call it the sentinel) to watch network traffic between the
sender and receiver looking for network traffic that is labeled, what the label is, and if
the label matches the user data contained in the network packet

The sender program simulates the generation of data in a format likely to be generated by a
JEDMICS server, mainly the IPSO data label. The receiver is a peer to the sender, which
would receive the data and perform some additional tests. The sentinel program acts as an

CMU/SEI-99-TN-003 11

aid to watch the network traffic between the sender and receiver programs. The details for
these programs are discussed below.

Promiscuous
mode

Figure 7. Sentinel Program

Sender and Receiver
The sender program would initiate a connection to the receiver. Once connected, the sender
would perform the following functions:

1. Set current security classification to 'U' ('U' for unclassified, 'S' for secret, and T'
for top secret); the sequence for classifications would follow this ordering.

2. Construct a security label with the current security classification.

3. Use setsockopt () to assign the label to outgoing network traffic; check for
error.

4. Construct a message that matched the current security classification (e.g., 'U' data
for 'U' label, 'S' data for 'S' label).

5. Send data to receiver; check for error.

6. Sequence to the next security classification.

7. Repeat these steps again from step 2 above.

The receiver, as a peer in this connection, would perform the following functions:

1. Block, waiting for data to appear on the inbound socket.

2. Read the data from the inbound socket; report the classification of the data (note:
'IT data is sent with a 'U' label, etc.).

3. Examine the receive buffer to detemine if data of different classifications were
intermixed; report any such error.

4. Repeat these steps again from step 1 above.

12 CMU/SEI-99-TN-003

The sender and the receiver would continue in their respective loops until they were
terminated.

The sender took a number of command line options, which could be used to change the
characteristics of the experiment. Those options are shown in the following table:

Option Meaning Function

-i TCP NO DELAY Data would be sent immediately and
would not permit the operating system to
buffer any data before sending.

-n NON-BLOCKING WRITES Operating system is instructed to copy
user data into the kernel and not wait for
resources—not all data may be sent due
to available kernel resources.

-o RUN ONCE Program is only to send one message and
stop.

-p [port] PORT NUMBER Sets the port number in which to contact
the receiver.

-s [size] BUFFER SIZE Sets the size of the message to be sent to
receiver (1 byte or greater).

-u UDP DATAGRAM Use UDP datagrams (TCP is the default)

Table 1. Sender Command Line Options

Sentinel

The sentinel program was designed to watch network traffic going between the sender and
receiver programs. This was accomplished by programming the network interface to read the
network in promiscuous mode. Promiscuous mode is simply a mode in which the network
interface card (NIC) receives all packets on the network, regardless of the machine to which
the packets are addressed. To minimize processing, the sentinel was programmed to read
only packets destined for a specific port number for a specific machine.

The sentinel was looking for IP packets that contained security violations. A security
violation was defined as an IP packet containing an IPSO label that did not match the data
contained in the packet. This definition, though limited, was sufficient to cover the cases of
security violations for which we were interested. The violations of interest were the
following:

CMU/SEI-99-TN-003 13

• Packet mislabeling: TCP or UDP data is mislabeled in the IP packet header. That is, data
appears in the network packet with an incorrect data label ('T' data labeled as 'U').

• Data mixing: TCP or UDP data requiring two different labels appear in the same IP
packet (both 'T' and 'U' data appear in the same packet; regardless of the label).

Packet Mislabeling

Our test harness was worthwhile. It demonstrated a packet mislabeling problem that can be
expected in a multi-labeling application (such as a JEDMICS server) running in a UNIX
operating system. In UNIX there are two paths to the network interface device, the write ()
system call and the setsockopt () library call (which uses the ioctl () system call), as
shown in Figure 8.

In the first path (labeled data stream in Figure 8), blocks of data are moved from user
(application) space to kernel space. Data are queued in kernel buffers to be processed by the
network stack, then are presented to the network driver, and finally sent though the NIC onto
the network. The second path is a direct command path to any functional layer through the
kernel, to the network driver or to the NIC (see Figure 8). Such I/O control commands are
not queued though the kernel stack like the data stream.

Application
Space

Kernel

-u
u
0

■H

■H

Kernel Device
buffers independent

routines

Device
specific
drivers

4

hardware

Figure 8. UNIX-Style Network Device Driver Architecture

Because of these two paths to the NIC, an inherent race condition exists that is difficult to
predict or control, and is at best problematic. This race condition can be illustrated by
considering the following example. While a data stream is making its way through the kernel
buffers and protocol stack(s), an I/O control is issued to one of the kernel routines or the
device driver before, during, or after the data stream reaches that same logical place in the
kernel. In our test harness, this was demonstrated by writing a sequence of 'T's to a network
socket and later issuing a setsockopt () to label subsequent packets with the label 'U'. In
many instances, latency in the kernel writes would result in data streams of 'T's to be labeled
by the NIC as 'U' data. This represented a mislabeled network packet (i.e., T' data labeled

14 CMU/SEI-99-TN-003

as 'U') and therefore a security violation. This was detected using the native Solaris snoop
utility and sentinel; a snapshot of that detection is shown in Figure 9.

jd.sei.cmu.edu -> gc.sei.cmu.edu TCP D=4004 S=34302
Ack=1740419550 Seq=3395512586 Len=1000 Win=8760

data 120; CIPSO header
|860c 0000 0000 0206 0055 OOee ><5fe
ca63 6<J!Js> 67be: bide 501.0 2?^f ;.-.<; fr-

15454 5454 5454 5454 5454 5454 54541 . . TTTTTTTTTTTTTT

IP_OPTION number
IP_OPTION length
CIPSO taglevel
Security Violation

from '128.237.3.98': found "I" when expecting 'U' at 0 of 1000

0x86 (CIPSO)
0x0c (12)
U (unclassified)

Figure 9. A Captured Mislabeled Network Packet

This race condition existed for the Sun Solaris 2.5.1, Sun Solaris 2.4, and Silicon Graphics
IRIX 5.3.

Data Mixing

TCP is a byte-stream protocol in which there are no record markers inserted between
application writes. If an application writes 50 bytes followed by a write of 10 bytes, followed
by a write of 30 bytes, the receiving application cannot determine the size of each individual
write. Additionally, the network system is allowed by the TCP specification to combine data
from individual writes into one TCP packet and to fragment a single write into multiple
packets. Therefore, there is no way to guarantee how that fragmentation or combination will
occur. To illustrate this point, consider the following application-specific protocol over TCP:

1. Client and server connect.

2. Client opens a file.

3. Client writes to the network the total size in bytes of the file to be sent.

4. Client writes to the network the bytes from the file.

5. Client continues from step 2 above until all files have been processed.

In this simple application protocol, it appears to the server that the file data are bounded by
the size of the file being sent to it. In fact, the server is easy to write. All it needs to do is read
the size of the file from the network, and then proceed to read that number of bytes from the
network. Once that number has been reached, the next network read will be the number of
bytes for the next file. However, the fragmentation of the original data on the client machine,
and the subsequent reassembling on the server machine, can tell a very different story, as
shown in Figure 10.

CMU/SEI-99-TN-003 15

E
CD CD

CO

/u/file_u /t/file_t

uuuuuu T1TTTT
Tl'l'l'lT

c
■go
ü £
a 2
Q. D.
<

write (socket, sizeof(/u/file_u));

write (socket, /u/file_u) ,-

write (socket, sizeof(/t/file_t));

write (socket, /t/file_t);

*- CO
CO CD
Q is at

TTTTTTTTTTTT12riT l. UUU06

«a
O CD

.5 o
CD CO
Z CL

PACKET SEQ #2 PACKET SEQ #1
TT12UUUUUU06

Tos erver

Figure 10. Arbitrary File Boundaries Ignored by TCP

In this example, the data stream in the kernel was arbitrarily broken up into two packets of
equal size. By observing the network traffic, we can see that the first packet sequence has
data from both file_u (unclassified) and file_t (top secret), where the second packet sequence
has the remaining data from file_t. The kernel or the TCP protocol cannot distinguish any
artificially constructed boundaries applied to the data. Further, correctly labeling the first
packet sequence, with respect to the data contained within it, is also problematic. Neither a
'T label nor a 'IT label is correct, since both types of data are present.

This problem was also detected using the snoop and sentinel utilities during the lab
experiments and is shown in Figure 11.

jd.sei.cmu.edu -> gc.sei.cmu.edu TCP D=4004 S=34304
Ack=3482872727 Secj=832516110 Len=120 Win=8760"M

data CIPSO header]
lb |860c 0000 0000 0206 0055 00ee BoOO
H 'i'9f -•"(;-? rfSS Sb97 5018 2/3P S ••:>'/ f.
}0 15555 5555 5555 5555 5555 5454 54541

label

.u...

IP_OPTION number
IP_OPTION length
CIPSO taglevel
Security Violation

from '128.237.3.98

UUUUUUUUUUTTTT

0x86 (CIPSO)
0x0c (12)
U (unclassified)

found 'T' when expecting 'U' at 10 of 120

Figure 11. A Captured Data Mixed Network Packet

As illustrated in Figure 11, both 'U' data and 'T' data appeared in a single packet and were
detected as a security violation.

16 CMU/SEI-99-TN-003

Results from Experiment 2
1. TCP/IP as defined by the specification [Postel 81b] does not support multiple data labels

over the same TCP connection. Although it is possible to successfully establish and
maintain an IPSO data label on a TCP connection, attempts to change the label on that
same connection can have non-deterministic results (such as packet mislabeling and data
mixing).

2. Interestingly, the sender program that was discussed above (in "Sender and Receiver")
was capable of optionally sending UDP datagrams. When the sender and the receiver
were configured for UDP we were able to send labeled messages without a security
violation—as long as the size of the message did not exceed the maximum transfer unit
(MTU) of the NIC. However, if the size of the message exceeded the NIC's MTU, we
could observe security violations.

3.3 Experiment 3—Labels and TCP/IP
Finally, we performed an analytical study rather than an experiment conducted in a test
harness. Given the evidence gathered from above, it was not difficult to identify cases where
IPSO labels in a Cryptek-hardened network could cause problems with TCP connections.
Most notably, we cover two such instances here:

• TCPACKS and "piggy backing": ATCP acknowledgement is combined with TCP data
where the data label for the acknowledgement does not match the TCP data. ('U'
acknowledgement data label is imposed on 'T' data.)

• TCP error processing: TCP packets are dropped by the recipient and are not
acknowledged due to a mismatch of the security data labels between sender and receiver.

TCP ACKS and "Piggy-Backing"
The TCP protocol allows acknowledgments (ACKs) to be sent along with data (frequently
called piggybacking). Piggybacking usually occurs when one end of a connection needs to
simultaneously send data and acknowledge received data. When this occurs, the ACK is sent
in the same packet as the data, which results in the same IPSO header for the
acknowledgement, and the data. Theoretically, in a secure environment one would expect the
IPSO header in an acknowledgment to match the data received.

The following is an example of this risk (as illustrated in Figure 12). Two processes are
communicating via TCP. Process 1 sends process 2 'U' data while process 2 sends process 1
T' data. At the lowest levels of each process' operating system (OS), the TCP drivers much
acknowledge (ACK) receipt of data. When process 2's OS prepares the 'T' data for
transmission to process 1, the OS is free to piggyback the TCP ACK for 'U' data received
from process 1 (at some earlier point in time). In a multi-labeling environment, the label that
will be assigned to the "piggybacked" packet cannot be determined. Further, assignment of

either a 'U' or 'T' data label would not be correct.

CMU/SEI-99-TN-003 17

Send "U" data

T data w/T label (fragment 1)

Tdataw/"U"label (fragment2 ACKlngJOfdata)

Send "T" data

Figure 12. TCP ACKS and "Piggy Backing" Failure

TCP Error Processing

When a TCP packet is lost, the network subsystem does not have to retransmit the identical
packet. Instead, the TCP specification allows an implementation to perform re-packetization,
which is the ability to send a packet that contains the lost segment and additional data that
need to be sent. Due to possible re-packetization of lost segments and the inability to specify
the IPSO header for a specific segment of data, one cannot reliably set the IPSO header to
reflect the data being sent once transmission of data begins.

When an incoming or outgoing packet violates a security constraint, the NIC would silently
discard the packet without notifying the application or operating system. This feature will
cause problems for TCP if a packet is discarded by the NIC once a connection has been
established (see Figure 13). Because TCP is a reliable protocol, it will resend the dropped
packets as the card will continue to drop the same packets that violate the security
constraints. Eventually the TCP connection will be broken due to retransmission failures.
The application has no way of determining the cause of the failure (e.g., was it a TCP circuit
failure or a security violation).

-In further analysis, we concluded that this behavior was not only acceptable, but preferred,
because it prevented covert channel analysis, which is in itself a potential security violation.

18 CMU/SEI-99-TN-003

Send "U" data

Switch IPSO Label
Send "T" data

Resend "T" data

Resend "T" data

Resend "T" data
& fail

ACK"U"data

Figure 13. TCP Error Processing

Results from Experiment 3

Although not directly observed in a testbed, analysis based on an understanding of the TCP
protocol indicates other problems associated with the application of multiple IPSO data
labels on the same TCP connection. The problems associated with TCP protocol
acknowledgements and error processing would be difficult to work around without a
fundamental change to the TCP protocol (which is unlikely).

CMU/SEI-99-TN-003 19

4 Summary Findings

Our investigations identified two issues that need to be addressed to successfully integrate
Cryptek's Diamondr/sAT Ultra technology for Phase 2 of deployment into the JEDMICS

environment. The issues are

• limitation of TCP support for switching IPSO data labeling over a single TCP-based
connection (discussed in Sections 3.2 and 3.3)

• limitation of WindowsNT support for IP SO data labeling (discussed in Section 3.1)

We found that the application of this technology in the context of JEDMICS servers that are

required to perform multiple data labeling functions was in direct conflict with the
underlying protocols and intended use of IPSO data labeling. Without a fundamental change
in the behavior of TCP, there is little likelihood that the application of the off-the-shelf
Cryptek technology could be applied in the context originally defined by the JEDMICS
environment.

Applications of data labeling are subject to the capabilities and limitations assigned to IPSO.
Essentially, the IP is capable of carrying security classification information on IP packets
(and also TCP segments), so this information can be communicated end-to-end across
multiple networks. In this manner, packet-level security information permits hosts and
gateways that operate in multilevel secure environments to properly segregate packets for

security considerations [Postel 81b].

For TCP, IPSO data labeling is limited to operate on a per connection basis. This means that
once a TCP connection is established, the IPSO label initially given to that connection is
supported for the life of that connection. Resetting the IPSO label a second time for the same
TCP connection is not supported by the specification: Section 2.9 (Precedence and Security)
of the TCP specification in [Postel 81b] warns that the use of IPSO to provide precedence
and security information is limited to a "per connection basis to TCP users."3 Further Postel
goes on to state that not all TCP modules will necessarily function in a multilevel secure

environment.

These statements, combined with the experiments performed by the Software Engineering
Institute (SEI), illustrate this limitation of IPSO to be true. Commercial operating systems do
not support changing the data label during a connection. The experiments conducted and

explanations given in Section 3 illustrate the nature of this limitation.

3 Users, in this context, are higher level applications and application-specific protocols based on TCP.

20 _ CMU/SEI-99-TN-003

5 Epilogue

The JEDMICS program believed that application of IPSO labeling via Cryptek's technology
would be an attractive, seamless mechanism for satisfying the requirements placed upon the
program. This theory would have been born out if JEDMICS servers had to deal only with
single classification levels. However, the additional level of complexity of requiring support
for different labels for each document had a negative cascading effect through the
application of DiamondTEK Ultra. Such application needs were in conflict with the
standards set for IP networks nearly 20 years ago and with the implementation of a single
vendors network stack, which fell short of the TCP specification.

To resolve this mismatch, the JEDMICS program changed the context of the problem they
were trying to solve. This was accomplished by the introduction of a security processor
(possibly to be prototyped by Phase 2 deployment). Figure 14 illustrates how this security
processor would operate.

Enclave 3

C-NICl

WWW
Server

Enclave 1

Client WWW
Server

NIC - Network Interface Card
C-NIC -Cryptek'sNetwork Interface Card

W
»ÜNiä Ic-Nicj—Hc-Nici IC-NICHM^

Security
Processor

Q
!JJ Legacy

JEDMICS
Server

Figure 14. Security Processor Example

In the example shown above, a security processor would be the sole gateway into a
JEDMICS server. In this case, the security processor would use a native application-specific
API (i.e., JEDMICS API for a JEDMICS server) to access documents. The security processor
at the application layer would read meta-data available from the legacy system via the API,
noting the security label. In turn the security processor would make use of DiamondTEK
Ultra to appropriately label outgoing data according to the information contained in the
meta-data.

CMU/SEI-99-TN-003 21

Given that the data outbound from the security process are labeled accordingly,
DiamondTEK Ultra would perform the necessary functions to encrypt the data and enforce
data labeling.

Given this capability, the security processor would be able to service multiple enclaves,
which would be required to use DiamondT.E# Ultra. In the example above, if a WWW server
from enclave 3 requests data and information from the legacy system (through the security
processor), which is required to be labeled higher than that enclave is permitted access, the
security processor can deny that data without any changes being made to the legacy backend
server. This enforcement would also be supported by DiamondTEK Ultra, as data labeled
higher than the receiving system is permitted to receive would be denied and audited by
£>7Gentral.

22 CMU/SEI-99-TN-003

References

[DoD 85] DoD 5200.28-STD, "DoD Trusted Computer System Evaluation
Criteria" [online]. U.S. Departmentof Defense, December 1985.
Available WWW: <URL:

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html>.

[IETF 93] IETF CIPSO Working Group. "Common IP Security Option Version
2.3" [online]. Trusted Systems Interoperability Group, March 1993.
Available WWW:

<URL: http://www.tsig.org/tsig/working_groups/cipso/cipso-rfc.txt>.

[Kent 92] Kent, S. "U.S. Department of Defense Security Options for the
Internet Protocol" (RFC-1108) [online]. Information Sciences Institute,
November 1992. Available WWW:
<URL:http://info.internet.isi.edu:80/in-notes/rfc/files/rfcll08.txt>.

[Microsoft 99] Microsoft Corporation. Microsoft's Visual Studio Documentation,
references on IP_OPTIONS [online]. Microsoft Corporation, 1999.
Available WWW: <URLs:
http://premium.microsoft.com/msdn/library/sdkdoc/sockspi/wsanxref_
58fm.htm

http://premium.microsoft.com/msdn/library/devprods/vs6/vc++/vcmfc
/_mfc_casyncsocket.3a3a.getsockopt.htm

http://premium.microsoft.com/msdn/library/devprods/vs6/vc++/vcmfc
/_mfc_casyncsocket.3a3a.setsockopt.htm>.

[Postel 81a] Postel, J. "Internet Protocol, DARPA Internet Program Protocol
Specification" (RFC-791) [online]. Information Sciences Institute,
September 1981. Available WWW:

<URL:http://info.internet.isi.edu:80/in-notes/rfc/files/rfc791.txt>.

[Postel 81b] Postel, J. "Transmission Control Protocol, DARPA Internet Program
Protocol Specification" (RFC-791) [online]. Information Sciences
Institute, September 1981. Available WWW:
<URL: http://info.internet.isi.edu: 80/in-notes/rfc/files/rfc793 .txt>.

CMU/SEI-99-TN-003 23

[Quinn 98] Quinn, B. "WinSock Version 2.0: Overview, Status and Pointers"
[online]. Bob Quinn, March 1998. Available WWW:
<URL: http://www.sockets.com/ws2_stat.htm>.

24 CMU/SEI-99-TN-003

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204 Arlinaton. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

June 1999

3. REPORT TYPE AND DATES
COVERED

Final
4. TITLE AND SUBTITLE

COTS in the Real World: A Case Study in Risk Discovery and Repair

5. FUNDING NUMBERS

C —F19628-95-C-0003

6. AUTHOR(S)

Scott Hissam, Daniel Plakosh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-99-TN-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Like many organizations in both the public and private sectors, the U.S. Department of Defense (DoD) is
committed to a policy of using commercial off-the-shelf (COTS) components in new systems, particularly
information systems. However, the DoD also has a long-standing set of security needs for its systems, and the
pressure to adopt COTS components can come into conflict with those security constraints. The major elements
of this conflict are the DoD's overall approach to system security on one hand and the economic forces that
drive the component industry on the other. As DoD managers and system integrators look to the COTS
marketplace for components to satisfy more security requirements, this conflict becomes more prominent. In this
report, we describe an actual product evaluation where just such a conflict occurred, examine why that conflict
exists, and outline the corrective steps that were taken.

14. SUBJECT TERMS

case study, commercial off-the-shelf (COTS), data labels, integration, security

15. NUMBER OF PAGES

24 pp.

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

